Fast 5

- 1. 980,000 90,000 =
- 2. 452.1 + 428.8 =
- 3. 25% of 560 =
- 4 F0 000 12 000 -
- 4. 50,000 12,000 =
- 5. 825.92 + 123.12 =

Fast 5

- 1. 980,000 90,000 = 890,000
- 2. 452.14 + 428.8 = 880.94
- 3. 25% of 560 = **140**
- 4. 50,000 12,000 = 62,000
- 5. 825.92 + 123.12 = **949.04**

Can I multiply by 10, 100 and 1,000?

Things to remember when multiplying by 10, 100 and 1,000

- The decimal point does not move, the numbers move around the decimal point.
- Putting in your place value columns can help
- The number of '0's determines how many place columns you need to move your digits
- When multiplying, your digits move to the left (get bigger)

Now try this question...

$$71 \times 10 =$$

Using a place value grid might help

Ten Thousands	Thousands	Hundreds	Tens	Units

How did you do?

1 place over

$$71 \times 10 = 710$$

Ten Thousands	inousands	Hunareas	rens	Units	
			7	1	
0 has one 0, so we are movin	g		plying, so our the left and v	•	

bigger

Ten Thousands Thousands Hundreds Tens Units

7 1 0

Try this question...

$$280 \times 100 =$$

Using a place value grid might help

Ten Thousands	Thousands	Hundreds	Tens	Units

How did you do?

$280 \times 100 = 28000$

Ten Thousands	Thousands	Hundreds	Tens	Units
		2	8	0

100 has 2 0's, so we are moving 2 places We are multiplying, so our digits will be moving to the left and will be getting bigger

Ten Thousands	Thousands	Hundreds	Tens	Units
2	8	0	0	0

Now try this question...

 $172.54 \times 1000 =$

Using a place value grid might help

Hundred Thousand s	 Thousand s	Hundreds	Tens	Units	•	Tenths	Hundredth s

1000 has 3 0's,

3 places over

Hundred

Thousand

so we are moving

Ten

Thousand

Thousand

Hundreds

How did you do? $172.54 \times 1000 = 172.540$

We are multiplying, so our digits will

be moving to the left and will be getting

Tenths

Hundredth

		_						
undred housand	Ten Thousand		Hundreds	Tens	Units	•	Tenths	Hundredth s

Tens

bigger

Units

Depending on how confident you feel, now try one of the activities below...

Red:

- 1) 71 X 10 =
- 2) 694 X 100 =
- 3) 44 X 1000 =
- 4) 910 X 10 =
- 5) 32.9 X 10 =
- 6) 51.67 X 1000 =
- 7) 71.03 X 10 =

Yellow:

- 1) 32.9 X 10 =
- 2) 51.67 X 1000 =
- 3) 71.03 X 10 =
- 4) 80.29 X 100 =
- 5) 47.603 X 1000 =
- 6) 46.989 X 1000 =
- 7) 800.73 X 100 =

Green:

- 1) 47.603 X 1000 =
- 2) 46.989 X 1000 =
- 3) 800.073 X 100 =
- 4) 902.043 X 100 =
- 5) 141.002 X 1000 =
- 6) 0.02 x 1000=
- 7) 0.008 x 100=